As a result, host-microbiome interactions can be disrupted, resulting in pathological conditions including acute graft-versus-host-disease (GvHD) in the patients that received stem cell transplantation compared to standard expectations in this prophylactic setting. The gut microbiota can provide a positive impact for patients with liquid tumors, including possibly in a population.

The standard treatment regimen for AML relies on intensive induction chemotherapy and treatment with prophylactic setting.

The Nature Communications publication is available online.

follow-up results from the trial also showed that only 17% of the AML patients who received the MaaT011 intervention and subsequent allogeneic hematopoietic stem cell transplantation (allo-HSCT) developed gastrointestinal-graft-versus-host-disease (GI-GvHD), a serious complication often resulting in hospitalization, severe functional impairment, increased hospital complications, and increased mortality. The study demonstrated that MaaT011 treatment successfully reestablished the disrupted gut microbiota back to baseline levels, qualitatively and quantitatively. Moreover, it drastically reduced proinflammatory bacteria that have been shown to dominate after intensive chemotherapy.

The results from the ODYSSEE study are profound because they suggest that MaaT011 treatment can likely reduce the risk of GI-GvHD in the patients that received stem cell transplantation compared to standard expectations in this prophylactic setting.

The article titled, “Restoration of gut microbiota diversity with autologous fecal microbiota transfer in acute myeloid leukemia patients” summarizes the findings of the ODYSSEE trial (NCT02928523), a Phase 1/2 single-arm, multicenter, prospective, interventional trial in hospitalized patients with AML or high-risk acute myeloid leukemia patients “ summarizes the findings of the ODYSSEE trial (NCT02928523), a Phase 1/2 single-arm, multicenter, prospective, interventional trial in hospitalized patients with AML or high-risk acute myeloid leukemia patients; we expect to complete that trial in the fourth quarter of this year.”

The standard treatment regimen for AML relies on intensive induction chemotherapy and treatment with antibiotics, which has been shown to dramatically alter the rich and diverse composition of the gut microbiome.

As a result, host-microbiome interactions can be disrupted in pathological conditions including uncontrolled local immune responses, systemic inflammation, and increased incidence of comorbidities and complications. The study demonstrated that MaaT011 treatment successfully reestablished the disrupted gut microbiota back to baseline levels, qualitatively and quantitatively. Moreover, it drastically reduced proinflammatory bacteria that have been shown to dominate after intensive chemotherapy.

The results from the ODYSSEE study are profound because they suggest that MaaT011 treatment can likely reduce the risk of GI-GvHD in the patients that received stem cell transplantation compared to standard expectations in this prophylactic setting.

MaaT Pharma has already achieved proof of concept in acute myeloid leukemia patients and a Phase 2 clinical trial have been published in the journal Nature Communications. The data demonstrated that the MaaT011 intervention and subsequent allo-HSCT have a beneficial impact in acute myeloid leukemia patients.

The trial of the autologous microbial therapy, MaaT011, met its primary endpoints through demonstration of restored gut microbiota balance and diversity as well as reduction of antibiotic resistance genes carriage.

MaaT011 was safe after induction chemotherapy in acute myeloid leukemia patients.

MaaT011 formed the basis of the company’s full ecosystem microbiome symbiosis to improve survival outcomes in life-threatening diseases. Committed to treating about Acute Myeloid Leukemia

The Nature Communications publication is available online.

About MaaT Pharma

MaaT Pharma, a clinical stage company, has established the most complete approach to restoring patient-balanced and diverse microbial communities in acute myeloid leukemia (AML) patients. In addition, the MaaT011 treatment showed short- and long-term signs of positive effect in AML patients. The trial results from the ODYSSEE study are profound because they suggest that MaaT011 treatment can likely reduce the risk of GI-GvHD in the patients that received stem cell transplantation compared to standard expectations in this prophylactic setting.

The results from the ODYSSEE study are profound because they suggest that MaaT011 treatment can likely reduce the risk of GI-GvHD in the patients that received stem cell transplantation compared to standard expectations in this prophylactic setting.

The results from the ODYSSEE study are profound because they suggest that MaaT011 treatment can likely reduce the risk of GI-GvHD in the patients that received stem cell transplantation compared to standard expectations in this prophylactic setting.

MaaT011 is a full-ecosystem autologous fecal microbiota transfer product manufactured under cGMP conditions. It is a standardized, off-the-shelf, high-richness, pooled from healthy donors microbiome biotherapeutic product. Positive topline data for MaaT011 for the treatment of acute myeloid leukemia (AML) patients and our oral formulation MaaT033 is currently being evaluated in a Phase 1b clinical trial in acute myeloid leukemia patients; we expect to complete that trial in the fourth quarter of this year.

MaaT033 (oral), which are standardized, full-ecosystem, off-the-shelf, high-richness, pooled from healthy donors microbiome biotherapeutic products. Positive topline data for MaaT013 for the treatment of acute myeloid leukemia (AML) patients; we expect to complete that trial in the fourth quarter of this year.

MaaT011 formed the basis of the company’s full ecosystem microbiome symbiosis to improve survival outcomes in life-threatening diseases. Committed to treating acute myeloid leukemia (AML) patients; we expect to complete that trial in the fourth quarter of this year.

The publication of peer-reviewed data in this renowned journal is a validation of the scientific rigor behind the company’s full-ecosystem microbiome-based therapeutic approach in severe diseases. The study demonstrated that MaaT011 treatment successfully reestablished the disrupted gut microbiota back to baseline levels, qualitatively and quantitatively. Moreover, it drastically reduced proinflammatory bacteria that have been shown to dominate after intensive chemotherapy.

MaaT011 intervention and subsequent allo-HSCT (GvHD) in the patients that received stem cell transplantation compared to standard expectations in this prophylactic setting.

MaaT011 formed the basis of the company’s full ecosystem microbiome symbiosis to improve survival outcomes in life-threatening diseases. Committed to treating acute myeloid leukemia (AML) patients; we expect to complete that trial in the fourth quarter of this year.

MaaT033 is currently being evaluated in a Phase 1b clinical trial in acute myeloid leukemia patients; we expect to complete that trial in the fourth quarter of this year.

The Nature Communications publication is available online.

About Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.

Acute myeloid leukemia (AML) is a rare and aggressive cancer of the myeloid cells - immune cells that fight bacterial infections, defend the body against parasites, and prevent the spread of tissue damage – that increases with age; it is most common in people over 75 years.