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Shotgun metagenomics analysis results are strongly dependent on the used bioinformatics software, databases and parameters. With the aim to compare its gut  
microbiome data analysis performances and to identify the main drivers impacting the results, MaaT Pharma compared the taxonomic and functional analysis  
results obtained with its gutPrint® proprietary pipeline, MgRunner, with three state-of-the-art optimized and routinely used analysis pipelines.

INTRODUCTION

Raw FASTQ files from two simulated datasets were shared with each pipelines’ owner. One was used to evaluate taxonomic analysis results [1] and the other for functional 
analysis results. The construction process of both datasets is illustrated in Figure 1. Taxonomic expected results correspond to taxa relative abundances alongside expec-
ted values for alpha- and beta-diversity indexes. Functional expected results correspond to gene richness, KEGG Orthology (KO) [2] and CAZymes relative abundances [3].  

Raw or normalized read counts were collected. Counts were rarefied using a pairwise defined threshold to allow comparisons between MgRunner v1.4.0 (MaaT Pharma) 
and each pipeline’s results (no comparison between external pipelines). Several complementary and commonly used evaluation metrics were used to compare all analysis  
results (Table 1). 

METHODS

Figure 1 – Construction workflow of the simulated datasets used to benchmark taxonomic and functional results. 
Orange rectangles correspond to steps specific to the simulated dataset designed to evaluate taxonomic analysis results and 
green rectangles to the dataset designed to compare functional analysis results. 

Table 1 – Evaluation metrics used to compare analysis results. TP: True Positive, FP: False Positive, FN: False Negative, Observed: 
Observed value, Expected: Expected value, 𝑥𝑖𝑘: abundance of the taxon 𝑖 in the sample 𝑘, 𝑠𝑗: number of taxa in the sample 𝑗, 𝑠𝑗𝑘: 
number of taxa shared between the sample 𝑗 and the sample 𝑘. Sample 1 corresponds to predicted results and sample 2 to ex-
pected results. All metrics were averaged across samples and represented as percentages. For deviations, the mean value was 
computed without FP (expected=0). Absolute deviations were computed on Bray-Curtis and Jaccard beta-diversity metrics which 
were only used in the context of the evaluation of the taxonomic analysis results. 
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Pipelines B and C showed greater deviations of relative abundances, of Shannon, 
Simpson and Inverse Simpson indexes at the genus level as compared to MgRunner 
(Figure 2A). These results can be explained by main differences in the used approach 
and database. Using a different approach but a similar database, pipeline A had lower 
deviation values than MgRunner for these latter alpha-diversity indexes but had a  
larger genus richness deviation value, mainly caused by a more permissive taxa  
abundance filter threshold applied as a post-processing step. 
Overall, MgRunner showed the best trade-off between beta-diversity similarity  
metrics, F1 score (best value), precision and recall values (Figure 2B). Pipeline A was 
better at recovering the complete expected community structure (recall and Bray- 
Curtis similarity) but showed lower performances in precision and Jaccard  
similarity (presence-absence metric). Conversely, pipeline C showed better precision,  
Jaccard similarity and genus richness deviation values, but lower recall and Bray-Curtis  
similarity values (Figure 2B). 

Species level
A shift in the distribution of values was globally observed at the species level,  
indicating that all pipelines had a lower performance on several metrics in  
comparison with the genus level (Figures 2C and 2D). 
Although the trends were similar, the ranking of MgRunner in relation to the other  
pipelines slightly varied for a set of metrics, showing notably that the performance 
gap between genus and species levels was not identical between pipelines. 

Figure 2 – Overview of benchmarking results obtained on taxonomic analysis results at genus and species levels. 
Benchmarking metrics, separated according to their optimal theoretical value and to the taxonomic level, are illustrated as  
spider plots. Metrics with an optimal theoretical value of 0% (deviations of relative abundances, of Shannon, Simpson and In-
verse Simpson alpha-diversity indexes, and absolute deviations of Jaccard and Bray-Curtis beta-diversity indexes) are repre-
sented in the left panels, and metrics with an optimal theoretical value of 100% (recall, precision, F1 score, Bray-Curtis similarity 
and Jaccard similarity) are represented in the right panels. The optimal theoretical results are represented in black, and each 
pipeline’s results are represented in different colors. Each pipeline’s results can only be compared with MgRunner’s and optimal 
theoretical results since different rarefaction thresholds were used on each pipeline’s results. Very close results were obtained 
by applying these different thresholds on MgRunner’s output; therefore, we represent the ones generated with the rarefaction 
threshold that does not change MgRunner’s ranking as compared to each pipeline. However, the different thresholds were not 
tested on external pipelines’ output.  A. Mean deviations of relative abundances, of alpha- and beta-diversity metrics computed 
at the genus level. B. Mean F1 score, precision, recall and beta-diversity similarity metrics computed at the genus level. C. Mean 
deviations of relative abundances, of alpha- and beta-diversity metrics computed at the species level. D. Mean F1 score, preci-
sion, recall and beta-diversity similarity metrics computed at the species level.

Functions
Two pipelines could not be compared on all the defined evaluation metrics. Indeed,  
pipeline A did not generate any output for the expected functional categories and  
pipeline B only generated KO abundances. Hence,  as  compared to pipeline C and  
partially to pipeline B, MgRunner obtained the best performances on all  
computed evaluation metrics (data not shown). Using a different database  
version as compared to MgRunner, pipeline C had the closest results to  
MgRunner (4 points difference in mean KO precision), and pipeline B, which is 
based on a different approach and database, had the furthest ones (54 points  
difference in mean KO precision).  Their performances can be explained by the  
computation of the expected results using the same functional database as the one 
used by MgRunner. Therefore, this has not only impacted the evaluation of pipeline B 
but also of pipeline C. 

CONCLUSION
We did not observe any single pipeline performing best on all metrics and analyses. 
MgRunner v1.4.0 held a good global position and we have also identified potential 
improvements. As expected, the used approach and database had a strong impact 
on results and performances, but so did the taxa abundance filter threshold. For 
the taxonomic analysis, an imbalance between precision and recall, and between  
abundance-based and presence-absence metrics was overall observed. For the  
functional analysis, the benchmark of results was challenging, thus more effort should 
be made to create simulated datasets with comprehensive and database-independent 
expected functional annotations.
This study shows the importance of not only evaluating analysis-specific  
software with default parameters but also complete analysis pipelines with  
optimized parameters to properly assess the quality of obtained results. Such  
evaluations should be performed using reference taxonomic and functional standard 
datasets and metrics, with known expected results, allowing users to perform an  
independent assessment. This would allow them to be aware of the limits of analysis 
pipelines and therefore of the validity of the conclusions drawn from the generated 
gut microbiome profiles.   
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