
• MaaT Pharma, a clinical-stage biotech pioneer in the development of Microbiome Ecosystem
Therapies (MET) in oncology, is defining its strategy to customize products in immuno-oncology
related indications.

• Correlation between gut microbiome composition with ICI efficacy in cancer therapy was observed
(e.g. studies listed in table 1), and FMT proofs of concept were performed [1, 2].

• Baseline stool metagenomic datasets from ICI treated cancer patients were gathered along with
their response as defined by Response Evaluation Criteria in Solid Tumors (RECIST) and provided by
each source study.

• Interstudy inconsistencies (figure 1 and 2) were observed in microbiome signature findings [3]. It is
thus critical to tackle this heterogeneity during the development of a reliable microbiota-based
drug candidate screening algorithm.
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This study:

• presents a robust methodology to enhance the performances of a multi-cohort-based Machine Learning approach

• shows good to very good predicting performances (0.74 > AUC > 0.65) except for 1 NSCLC (AUC = 0.57) and 1 melanoma (AUC = 0.52) cohort

• highlights the significance of dataset size in ICI microbiota models

• emphasizes the benefice of combining indications to leverage model's performance

Conditioned to the best performing model, the stools (single or pooled) from MaaT Pharma healthy donors harbor a considerable ratio (91%) of “ICI
Responder-like”, significantly higher than the mono-donor stools (73%) suggesting that pooled ecosystems from healthy donors could better convert
ICI-non responders into responders.

Altogether, this work shows evidence of an AI strategy potential to screen and select microbiota-based drug development candidates with the objective
to treat solid cancer patients in combination with immunotherapy.

Name Publication reference Indication ICI Drug(s) # patients
Proportion of 

Responders

Frankel
2017

Frankel et al., Neoplasia (2017) 19, 

848–855.
Anti-PD1 / Anti-CTLA4 39 0.62

Gopalakrishnan

2018

Gopalakrishnan V. et al., Science. 

2018;359(6371):97-103.
Anti-PD1 25 0.56

Routy

2018

(RCC) Routy B. et al., Science. 

2018;359(6371):91-97.

Anti-PD1 66 0.68

Routy

2018

(NSCLC)

Anti-PD1 87 0.47

Matson

2018

Matson V. et al., Science. 

2018;359(6371):104-108.
Anti-PD1 41 0.38

Peters

2019

Peters B.A. et al., Genome Med. 

2019;11(1):61.

Anti-PD1 (58,3%)

Anti-CTLA4 (8,3%)

Anti-PD1/Anti-CTLA4 (33,3%)

27 0.56

Spencer

2021

Spencer C. et al., Science. 2021 

December 24; 374(6575): 1632–1640.

Anti-PD1 (76,6%)

Other ICI (17.2%)

Other-systemic (6.2%)

145 0.66

Lee

2022

Lee, K. et al., Nature Medicine, 

February 28, 2022, 1–10.

Anti-PD1 (61%)

Anti-CTLA4 (32%)

Anti-PD1/Anti-CTLA4 (7%)

165 0.57

McCulloch

2022

McCulloch, J.A. et al., Nature 

Medicine, February 28, 2022, 1–12.
Anti-PD1 94 0.54

Derosa

2022

(NSCLC)

Derosa, L et al., Nature Medicine, 

February 28: 315–24.

97% Anti-PD1

3% Anti-PD1 + chemo 338 0.52

2017

2022

2018

2019

2021

Figure 3: Summary of baseline 
Whole Metagenome Sequencing
(WMS) public datasets

Figure 1: Comparison of species identified in the 
literature. Only species mentioned in the abstracts of the 
related papers were gathered.
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Positive contributions

Akkermansia muciniphila ⬤ ⬤ ⬤

Bacteroides caccae ⬤

Bacteroides thetaiotamicron ⬤

Bifidobacterium adolescentis ⬤

Bifidobacterium longum ⬤

Bifidobacterium pseudocatenulatum ⬤

Collinsella aerofaciens ⬤

Coprococcus eutactus ⬤

Dorea formicogenerans ⬤

Enterococcus faecium ⬤

Eubacterium hallii

Faecalibacterium prausnitzii ⬤ ⬤

Holdemania filiformis ⬤

Lachnospiraceae bacterium 31 46FAA ⬤

Lachnospiraceae bacterium spp. ⬤

Prevotella stercorea ⬤

Roseburia spp ⬤

Ruminococcaceae family ⬤ ⬤

Streptococcus anginosus ⬤

Streptococcus sanguinis ⬤

Negative contributions

Bacteroides ovatus / dorei / massiliensis ⬤

Blautia producta ⬤

Ruminococcus gnavus ⬤

Streptococcaceae spp. ⬤

Routy
2018 

-
Derosa

2022 
(NSCLC)

Routy 
2018 
(RCC)

Frankel 2017

Gopala-
krishnan

2018 
-

Spencer 
2021

Lee
2022

McCulloch
2022

Matson 
2018

Peters
2019

ALL 
MELANOMA ALL DATASETS

Indication
NSCLC

RCC
Melanoma

ICI Anti-PD1 Anti-PD1 Anti-PD1 / 
Anti-CTLA4 Anti-PD1 Anti-PD1 / 

Anti-CTLA4 Anti-PD1 Anti-PD1 Anti-PD1 / 
Anti-CTLA4

Anti-PD1 / 
Anti-CTLA4

Anti-PD1 / 
Anti-CTLA4

# patients 381 29 32 57 121 58 36 22 326 736

AUC 0.57 0.71 0.66 0.65 0.66 0.52 0.66 0.74
Mean: 
0.65

Mean: 
0.65

Precision 0.56 0.81 0.68 0.63 0.66 0.55 0.57 0.67
Mean: 
0.63

Mean: 
0.65

Table 2 : Best model's performance by dataset and indication Figure 5 : Best model's results on multiple dataset combinations Figure 6 : Predictions for healthy donor stool samples

• The best performing experiment provided models based on genera, KEGG Pathways and alpha
diversity features as inputs treated with the XGBoost algorithm. AUCs range from 0.52 to 0.74
depending on the left-out cohort (average AUC = 0.65) and a precision that ranges between
0.55 and 0.81 (average precision = 0.65).

• Those results outperform melanoma-centered study with a comparable assessment method
[4] for common cohorts (where Matson AUC = 0.61, Gopalakrishnan AUC = 0.56, Frankel AUC =
0.63, and mean Lee datasets AUC = 0.60).

Table 1: Description of baseline WMS public datasets

Despite the diverse data sources and indications:

• more datasets (since 2021) improved the classification
performances

• the multi-indication approach surpassed the mono-
indication (melanoma) training approach for predictions
related to melanoma patients.

• Considering the scoring of MaaT
pharma healthy cohort samples, 73%
of mono-donors and 91% of pools
were classified as “Responder-like”.

As part of gutPrint®, MaaT Pharma’s bioinformatics and AI platform, a robust machine learning (ML)
approach for screening microbiome samples and predict potential responder status to ICIs was
developed. The models were trained from microbiota Whole Metagenome Sequencing (WMS) datasets
processed by gutPrint® MgRunner to provide Functional (KEGG) and Taxonomic (species and genera)
information. We relied on the Area Under the ROC Curve (AUC) and precision to assess cross-cohort
predictions performances computed though a Leave-One-Dataset-Out (LODO) validation strategy.

Figure 2: t-SNE of  baseline samples from 10 public cohort based on genus, KEGG 
Pathways and alpha diversity.
Preprocessing steps: relative abundance normalization and standard scaling.
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Figure 4: Data processing and AI framework methodologies. All samples were processed by gutPrint® MgRunner to get taxonomic and functional 
features. The processed datasets were distributed sequentially in the cross-validation set used to select parameters (and then used as the 
training set),  and in the left-out test dataset. This strategy was repeated for each dataset as left-out, and for the 70 designed experiments.

1. MaaT Pharma gutPrint® developed an AI Framework and trained models to grade samples as

“Responder-like” according to the baseline stool metagenomics of ICI treated cancer patients.

2. Improved results were obtained with:

• more patient data, and we assume there is still room for improvement with an increased

number of observations

• combining indications.

3. The application of the best performing model (mean LODO AUC = 0.65) to MaaT Pharma’s healthy

donor cohort or pooled samples (mixes of stools from 4 to 8 healthy donors) classified a large

majority of those as “Responder-like” microbiota (especially pooled samples)
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